There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{v}^{4}{t}^{2}{\frac{1}{({v}^{2}{t}^{2} + {a}^{2})}}^{(\frac{3}{2})} + {v}^{2}{\frac{1}{({v}^{2}{t}^{2} + {a}^{2})}}^{\frac{1}{2}}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-v^{4}t^{2}}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}} + \frac{v^{2}}{(v^{2}t^{2} + a^{2})^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-v^{4}t^{2}}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}} + \frac{v^{2}}{(v^{2}t^{2} + a^{2})^{\frac{1}{2}}}\right)}{dt}\\=&-(\frac{\frac{-3}{2}(v^{2}*2t + 0)}{(v^{2}t^{2} + a^{2})^{\frac{5}{2}}})v^{4}t^{2} - \frac{v^{4}*2t}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}} + (\frac{\frac{-1}{2}(v^{2}*2t + 0)}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}})v^{2} + 0\\=&\frac{3v^{6}t^{3}}{(v^{2}t^{2} + a^{2})^{\frac{5}{2}}} - \frac{3v^{4}t}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!