本次共计算 1 个题目:每一题对 y 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-12sin(x){\frac{1}{(2x + 3y)}}^{2} + \frac{12cos(x)}{(2x + 3y)} - 3ln(2x + 3y)sin(x) + 16xsin(x){\frac{1}{(2x + 3y)}}^{3} - \frac{12xcos(x)}{(2x + 3{y}^{2} - \frac{6xsin(x)}{(2x + 3y)} - xln(2x + 3y)cos(x))} 关于 y 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-12sin(x)}{(2x + 3y)^{2}} + \frac{12cos(x)}{(2x + 3y)} - 3ln(2x + 3y)sin(x) + \frac{16xsin(x)}{(2x + 3y)^{3}} - \frac{12xcos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-12sin(x)}{(2x + 3y)^{2}} + \frac{12cos(x)}{(2x + 3y)} - 3ln(2x + 3y)sin(x) + \frac{16xsin(x)}{(2x + 3y)^{3}} - \frac{12xcos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)}\right)}{dy}\\=&-12(\frac{-2(0 + 3)}{(2x + 3y)^{3}})sin(x) - \frac{12cos(x)*0}{(2x + 3y)^{2}} + 12(\frac{-(0 + 3)}{(2x + 3y)^{2}})cos(x) + \frac{12*-sin(x)*0}{(2x + 3y)} - \frac{3(0 + 3)sin(x)}{(2x + 3y)} - 3ln(2x + 3y)cos(x)*0 + 16(\frac{-3(0 + 3)}{(2x + 3y)^{4}})xsin(x) + \frac{16xcos(x)*0}{(2x + 3y)^{3}} - 12(\frac{-(\frac{-x(0 + 3)cos(x)}{(2x + 3y)} - xln(2x + 3y)*-sin(x)*0 + 3*2y - 6(\frac{-(0 + 3)}{(2x + 3y)^{2}})xsin(x) - \frac{6xcos(x)*0}{(2x + 3y)} + 0)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}})xcos(x) - \frac{12x*-sin(x)*0}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)}\\=&\frac{72sin(x)}{(2x + 3y)^{3}} - \frac{36cos(x)}{(2x + 3y)^{2}} - \frac{9sin(x)}{(2x + 3y)} - \frac{144xsin(x)}{(2x + 3y)^{4}} - \frac{36x^{2}cos^{2}(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}(2x + 3y)} + \frac{72xycos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}} + \frac{216x^{2}sin(x)cos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}(2x + 3y)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!