There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -12sin(x){\frac{1}{(2x + 3y)}}^{2} + \frac{12cos(x)}{(2x + 3y)} - 3ln(2x + 3y)sin(x) + 16xsin(x){\frac{1}{(2x + 3y)}}^{3} - \frac{12xcos(x)}{(2x + 3{y}^{2} - \frac{6xsin(x)}{(2x + 3y)} - xln(2x + 3y)cos(x))}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-12sin(x)}{(2x + 3y)^{2}} + \frac{12cos(x)}{(2x + 3y)} - 3ln(2x + 3y)sin(x) + \frac{16xsin(x)}{(2x + 3y)^{3}} - \frac{12xcos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-12sin(x)}{(2x + 3y)^{2}} + \frac{12cos(x)}{(2x + 3y)} - 3ln(2x + 3y)sin(x) + \frac{16xsin(x)}{(2x + 3y)^{3}} - \frac{12xcos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)}\right)}{dy}\\=&-12(\frac{-2(0 + 3)}{(2x + 3y)^{3}})sin(x) - \frac{12cos(x)*0}{(2x + 3y)^{2}} + 12(\frac{-(0 + 3)}{(2x + 3y)^{2}})cos(x) + \frac{12*-sin(x)*0}{(2x + 3y)} - \frac{3(0 + 3)sin(x)}{(2x + 3y)} - 3ln(2x + 3y)cos(x)*0 + 16(\frac{-3(0 + 3)}{(2x + 3y)^{4}})xsin(x) + \frac{16xcos(x)*0}{(2x + 3y)^{3}} - 12(\frac{-(\frac{-x(0 + 3)cos(x)}{(2x + 3y)} - xln(2x + 3y)*-sin(x)*0 + 3*2y - 6(\frac{-(0 + 3)}{(2x + 3y)^{2}})xsin(x) - \frac{6xcos(x)*0}{(2x + 3y)} + 0)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}})xcos(x) - \frac{12x*-sin(x)*0}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)}\\=&\frac{72sin(x)}{(2x + 3y)^{3}} - \frac{36cos(x)}{(2x + 3y)^{2}} - \frac{9sin(x)}{(2x + 3y)} - \frac{144xsin(x)}{(2x + 3y)^{4}} - \frac{36x^{2}cos^{2}(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}(2x + 3y)} + \frac{72xycos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}} + \frac{216x^{2}sin(x)cos(x)}{(-xln(2x + 3y)cos(x) + 3y^{2} - \frac{6xsin(x)}{(2x + 3y)} + 2x)^{2}(2x + 3y)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!