数学
语言:中文
Language:
English
在线解方程
展开
在线解一元方程
在线解多元方程
数学运算
展开
解不等式
数学计算
分数计算
数学统计
分解质因数
分数小数互化
贷款计算器
线性代数
折叠
行列式
矩阵相乘
求逆矩阵
求导函数
函数图像
热门问题
求逆矩阵:
输入一个可逆矩阵,每个元用逗号隔开,每行用分号结尾。
注意,不支持支持数学函数和变量。
当前位置:线性代数 >
求逆矩阵
>
逆矩阵计算历史
>答案
$$\begin{aligned}&\\ \color{black}{计算矩阵}& \ \ \begin{pmatrix} &1\ &2\ &7\ &8\ \\ &5\ &4\ &9\ &3\ \\ &6\ &6\ &7\ &7\ \\ &2\ &8\ &5\ &4\ \end{pmatrix}\color{black}{的逆矩阵。}\\ \\解:&\\ &\begin{pmatrix} &1\ &2\ &7\ &8\ \\ &5\ &4\ &9\ &3\ \\ &6\ &6\ &7\ &7\ \\ &2\ &8\ &5\ &4\ \end{pmatrix}\\\\&\color{grey}{用矩阵的初等变换来求逆矩阵:}\\&\left (\begin{array} {ccccc | cccc} &1\ &2\ &7\ &8\ &1\ &0\ &0\ &0\ \\ &5\ &4\ &9\ &3\ &0\ &1\ &0\ &0\ \\ &6\ &6\ &7\ &7\ &0\ &0\ &1\ &0\ \\ &2\ &8\ &5\ &4\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{将已知矩阵化为上三角矩阵}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &2\ &7\ &8\ &1\ &0\ &0\ &0\ \\ &0\ &-6\ &-26\ &-37\ &-5\ &1\ &0\ &0\ \\ &0\ &-6\ &-35\ &-41\ &-6\ &0\ &1\ &0\ \\ &0\ &4\ &-9\ &-12\ &-2\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &2\ &7\ &8\ &1\ &0\ &0\ &0\ \\ &0\ &-6\ &-26\ &-37\ &-5\ &1\ &0\ &0\ \\ &0\ &0\ &-9\ &-4\ &-1\ &-1\ &1\ &0\ \\ &0\ &0\ &-\frac{79}{3}\ &-\frac{110}{3}\ &-\frac{16}{3}\ &\frac{2}{3}\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &2\ &7\ &8\ &1\ &0\ &0\ &0\ \\ &0\ &-6\ &-26\ &-37\ &-5\ &1\ &0\ &0\ \\ &0\ &0\ &-9\ &-4\ &-1\ &-1\ &1\ &0\ \\ &0\ &0\ &0\ &-\frac{674}{27}\ &-\frac{65}{27}\ &\frac{97}{27}\ &-\frac{79}{27}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将对角线以上的元素化为0}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &2\ &7\ &0\ &\frac{77}{337}\ &\frac{388}{337}\ &-\frac{316}{337}\ &\frac{108}{337}\ \\ &0\ &-6\ &-26\ &0\ &-\frac{965}{674}\ &-\frac{2915}{674}\ &\frac{2923}{674}\ &-\frac{999}{674}\ \\ &0\ &0\ &-9\ &0\ &-\frac{207}{337}\ &-\frac{531}{337}\ &\frac{495}{337}\ &-\frac{54}{337}\ \\ &0\ &0\ &0\ &-\frac{674}{27}\ &-\frac{65}{27}\ &\frac{97}{27}\ &-\frac{79}{27}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &2\ &0\ &0\ &-\frac{84}{337}\ &-\frac{25}{337}\ &\frac{69}{337}\ &\frac{66}{337}\ \\ &0\ &-6\ &0\ &0\ &\frac{77847}{227138}\ &\frac{51561}{227138}\ &\frac{21231}{227138}\ &-\frac{687}{674}\ \\ &0\ &0\ &-9\ &0\ &-\frac{207}{337}\ &-\frac{531}{337}\ &\frac{495}{337}\ &-\frac{54}{337}\ \\ &0\ &0\ &0\ &-\frac{674}{27}\ &-\frac{65}{27}\ &\frac{97}{27}\ &-\frac{79}{27}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{30667}{227138}\ &\frac{1}{674}\ &\frac{53583}{227138}\ &-\frac{32689}{227138}\ \\ &0\ &-6\ &0\ &0\ &\frac{77847}{227138}\ &\frac{51561}{227138}\ &\frac{21231}{227138}\ &-\frac{687}{674}\ \\ &0\ &0\ &-9\ &0\ &-\frac{207}{337}\ &-\frac{531}{337}\ &\frac{495}{337}\ &-\frac{54}{337}\ \\ &0\ &0\ &0\ &-\frac{674}{27}\ &-\frac{65}{27}\ &\frac{97}{27}\ &-\frac{79}{27}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将主对角线元素化为1}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{30667}{227138}\ &\frac{1}{674}\ &\frac{53583}{227138}\ &-\frac{32689}{227138}\ \\ &0\ &1\ &0\ &0\ &-\frac{25949}{454276}\ &-\frac{17187}{454276}\ &-\frac{7077}{454276}\ &\frac{229}{1348}\ \\ &0\ &0\ &-9\ &0\ &-\frac{207}{337}\ &-\frac{531}{337}\ &\frac{495}{337}\ &-\frac{54}{337}\ \\ &0\ &0\ &0\ &-\frac{674}{27}\ &-\frac{65}{27}\ &\frac{97}{27}\ &-\frac{79}{27}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{30667}{227138}\ &\frac{1}{674}\ &\frac{53583}{227138}\ &-\frac{32689}{227138}\ \\ &0\ &1\ &0\ &0\ &-\frac{25949}{454276}\ &-\frac{17187}{454276}\ &-\frac{7077}{454276}\ &\frac{229}{1348}\ \\ &0\ &0\ &1\ &0\ &\frac{23}{337}\ &\frac{59}{337}\ &-\frac{55}{337}\ &\frac{6}{337}\ \\ &0\ &0\ &0\ &-\frac{674}{27}\ &-\frac{65}{27}\ &\frac{97}{27}\ &-\frac{79}{27}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{30667}{227138}\ &\frac{1}{674}\ &\frac{53583}{227138}\ &-\frac{32689}{227138}\ \\ &0\ &1\ &0\ &0\ &-\frac{25949}{454276}\ &-\frac{17187}{454276}\ &-\frac{7077}{454276}\ &\frac{229}{1348}\ \\ &0\ &0\ &1\ &0\ &\frac{23}{337}\ &\frac{59}{337}\ &-\frac{55}{337}\ &\frac{6}{337}\ \\ &0\ &0\ &0\ &1\ &\frac{65}{674}\ &-\frac{97}{674}\ &\frac{79}{674}\ &-\frac{27}{674}\ \\\end{array} \right )\\\\&\color{grey}{所求的逆矩阵为:}\\&\begin{pmatrix} &-\frac{30667}{227138}\ &\frac{1}{674}\ &\frac{53583}{227138}\ &-\frac{32689}{227138}\ \\ &-\frac{25949}{454276}\ &-\frac{17187}{454276}\ &-\frac{7077}{454276}\ &\frac{229}{1348}\ \\ &\frac{23}{337}\ &\frac{59}{337}\ &-\frac{55}{337}\ &\frac{6}{337}\ \\ &\frac{65}{674}\ &-\frac{97}{674}\ &\frac{79}{674}\ &-\frac{27}{674}\ \end{pmatrix}\end{aligned}$$
你的问题在这里没有得到解决?请到 
热门难题
 里面看看吧!
返 回
矩阵的初等变换:
定义:
对矩阵的行(列)施行下列三种变换都成为矩阵的
初等变换
:
(1)互换矩阵两行(列)的位置;
(2)用非零常数λ乘矩阵的某行(列);
(3)将矩阵某行(列)的γ倍加到矩阵的另一行(列)上。
新增加
学习笔记(安卓版)百度网盘快速下载
应用程序,欢迎使用。
新增加
学习笔记(安卓版)本站下载
应用程序,欢迎使用。
新增线性代数
行列式
的计算,欢迎使用。
数学计算和一元方程已经支持
正割函数
和
余割函数
,欢迎使用。
新增加
贷款计算器
模块(具体位置:数学运算 >
贷款计算器
),欢迎使用。