数学
语言:中文
Language:
English
在线解方程
展开
在线解一元方程
在线解多元方程
数学运算
展开
解不等式
数学计算
分数计算
数学统计
分解质因数
分数小数互化
贷款计算器
线性代数
折叠
行列式
矩阵相乘
求逆矩阵
求导函数
函数图像
热门问题
求逆矩阵:
输入一个可逆矩阵,每个元用逗号隔开,每行用分号结尾。
注意,不支持支持数学函数和变量。
当前位置:线性代数 >
求逆矩阵
>
逆矩阵计算历史
>答案
$$\begin{aligned}&\\ \color{black}{计算矩阵}& \ \ \begin{pmatrix} &1\ &1\ &1\ &1\ \\ &1\ &2\ &-1\ &4\ \\ &2\ &-3\ &-1\ &-5\ \\ &3\ &1\ &2\ &11\ \end{pmatrix}\color{black}{的逆矩阵。}\\ \\解:&\\ &\begin{pmatrix} &1\ &1\ &1\ &1\ \\ &1\ &2\ &-1\ &4\ \\ &2\ &-3\ &-1\ &-5\ \\ &3\ &1\ &2\ &11\ \end{pmatrix}\\\\&\color{grey}{用矩阵的初等变换来求逆矩阵:}\\&\left (\begin{array} {ccccc | cccc} &1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &1\ &2\ &-1\ &4\ &0\ &1\ &0\ &0\ \\ &2\ &-3\ &-1\ &-5\ &0\ &0\ &1\ &0\ \\ &3\ &1\ &2\ &11\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{将已知矩阵化为上三角矩阵}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &0\ &1\ &-2\ &3\ &-1\ &1\ &0\ &0\ \\ &0\ &-5\ &-3\ &-7\ &-2\ &0\ &1\ &0\ \\ &0\ &-2\ &-1\ &8\ &-3\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &0\ &1\ &-2\ &3\ &-1\ &1\ &0\ &0\ \\ &0\ &0\ &-13\ &8\ &-7\ &5\ &1\ &0\ \\ &0\ &0\ &-5\ &14\ &-5\ &2\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &0\ &1\ &-2\ &3\ &-1\ &1\ &0\ &0\ \\ &0\ &0\ &-13\ &8\ &-7\ &5\ &1\ &0\ \\ &0\ &0\ &0\ &\frac{142}{13}\ &-\frac{30}{13}\ &\frac{1}{13}\ &-\frac{5}{13}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将对角线以上的元素化为0}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &1\ &1\ &0\ &\frac{86}{71}\ &-\frac{1}{142}\ &\frac{5}{142}\ &-\frac{13}{142}\ \\ &0\ &1\ &-2\ &0\ &-\frac{26}{71}\ &\frac{139}{142}\ &\frac{15}{142}\ &-\frac{39}{142}\ \\ &0\ &0\ &-13\ &0\ &-\frac{377}{71}\ &\frac{351}{71}\ &\frac{91}{71}\ &-\frac{52}{71}\ \\ &0\ &0\ &0\ &\frac{142}{13}\ &-\frac{30}{13}\ &\frac{1}{13}\ &-\frac{5}{13}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &1\ &0\ &0\ &\frac{57}{71}\ &\frac{3763}{10082}\ &\frac{1349}{10082}\ &-\frac{1491}{10082}\ \\ &0\ &1\ &0\ &0\ &\frac{32}{71}\ &\frac{2201}{10082}\ &-\frac{13}{142}\ &-\frac{1633}{10082}\ \\ &0\ &0\ &-13\ &0\ &-\frac{377}{71}\ &\frac{351}{71}\ &\frac{91}{71}\ &-\frac{52}{71}\ \\ &0\ &0\ &0\ &\frac{142}{13}\ &-\frac{30}{13}\ &\frac{1}{13}\ &-\frac{5}{13}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &\frac{25}{71}\ &\frac{11}{71}\ &\frac{1136}{5041}\ &\frac{1}{71}\ \\ &0\ &1\ &0\ &0\ &\frac{32}{71}\ &\frac{2201}{10082}\ &-\frac{13}{142}\ &-\frac{1633}{10082}\ \\ &0\ &0\ &-13\ &0\ &-\frac{377}{71}\ &\frac{351}{71}\ &\frac{91}{71}\ &-\frac{52}{71}\ \\ &0\ &0\ &0\ &\frac{142}{13}\ &-\frac{30}{13}\ &\frac{1}{13}\ &-\frac{5}{13}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将主对角线元素化为1}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &\frac{25}{71}\ &\frac{11}{71}\ &\frac{1136}{5041}\ &\frac{1}{71}\ \\ &0\ &1\ &0\ &0\ &\frac{32}{71}\ &\frac{2201}{10082}\ &-\frac{13}{142}\ &-\frac{1633}{10082}\ \\ &0\ &0\ &1\ &0\ &\frac{29}{71}\ &-\frac{27}{71}\ &-\frac{7}{71}\ &\frac{4}{71}\ \\ &0\ &0\ &0\ &\frac{142}{13}\ &-\frac{30}{13}\ &\frac{1}{13}\ &-\frac{5}{13}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &\frac{25}{71}\ &\frac{11}{71}\ &\frac{1136}{5041}\ &\frac{1}{71}\ \\ &0\ &1\ &0\ &0\ &\frac{32}{71}\ &\frac{2201}{10082}\ &-\frac{13}{142}\ &-\frac{1633}{10082}\ \\ &0\ &0\ &1\ &0\ &\frac{29}{71}\ &-\frac{27}{71}\ &-\frac{7}{71}\ &\frac{4}{71}\ \\ &0\ &0\ &0\ &1\ &-\frac{15}{71}\ &\frac{1}{142}\ &-\frac{5}{142}\ &\frac{13}{142}\ \\\end{array} \right )\\\\&\color{grey}{所求的逆矩阵为:}\\&\begin{pmatrix} &\frac{25}{71}\ &\frac{11}{71}\ &\frac{1136}{5041}\ &\frac{1}{71}\ \\ &\frac{32}{71}\ &\frac{2201}{10082}\ &-\frac{13}{142}\ &-\frac{1633}{10082}\ \\ &\frac{29}{71}\ &-\frac{27}{71}\ &-\frac{7}{71}\ &\frac{4}{71}\ \\ &-\frac{15}{71}\ &\frac{1}{142}\ &-\frac{5}{142}\ &\frac{13}{142}\ \end{pmatrix}\end{aligned}$$
你的问题在这里没有得到解决?请到 
热门难题
 里面看看吧!
返 回
矩阵的初等变换:
定义:
对矩阵的行(列)施行下列三种变换都成为矩阵的
初等变换
:
(1)互换矩阵两行(列)的位置;
(2)用非零常数λ乘矩阵的某行(列);
(3)将矩阵某行(列)的γ倍加到矩阵的另一行(列)上。
新增加
学习笔记(安卓版)百度网盘快速下载
应用程序,欢迎使用。
新增加
学习笔记(安卓版)本站下载
应用程序,欢迎使用。
新增线性代数
行列式
的计算,欢迎使用。
数学计算和一元方程已经支持
正割函数
和
余割函数
,欢迎使用。
新增加
贷款计算器
模块(具体位置:数学运算 >
贷款计算器
),欢迎使用。