数学
语言:中文
Language:
English
在线解方程
展开
在线解一元方程
在线解多元方程
数学运算
展开
解不等式
数学计算
分数计算
数学统计
分解质因数
分数小数互化
贷款计算器
线性代数
折叠
行列式
矩阵相乘
求逆矩阵
求导函数
函数图像
热门问题
求逆矩阵:
输入一个可逆矩阵,每个元用逗号隔开,每行用分号结尾。
注意,不支持支持数学函数和变量。
当前位置:线性代数 >
求逆矩阵
>
逆矩阵计算历史
>答案
$$\begin{aligned}&\\ \color{black}{计算矩阵}& \ \ \begin{pmatrix} &3\ &2\ &2\ &2\ &2\ \\ &2\ &3\ &2\ &2\ &2\ \\ &2\ &2\ &3\ &2\ &2\ \\ &2\ &2\ &2\ &3\ &2\ \\ &2\ &2\ &2\ &2\ &3\ \end{pmatrix}\color{black}{的逆矩阵。}\\ \\解:&\\ &\begin{pmatrix} &3\ &2\ &2\ &2\ &2\ \\ &2\ &3\ &2\ &2\ &2\ \\ &2\ &2\ &3\ &2\ &2\ \\ &2\ &2\ &2\ &3\ &2\ \\ &2\ &2\ &2\ &2\ &3\ \end{pmatrix}\\\\&\color{grey}{用矩阵的初等变换来求逆矩阵:}\\&\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &2\ &2\ &1\ &0\ &0\ &0\ &0\ \\ &2\ &3\ &2\ &2\ &2\ &0\ &1\ &0\ &0\ &0\ \\ &2\ &2\ &3\ &2\ &2\ &0\ &0\ &1\ &0\ &0\ \\ &2\ &2\ &2\ &3\ &2\ &0\ &0\ &0\ &1\ &0\ \\ &2\ &2\ &2\ &2\ &3\ &0\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{将已知矩阵化为上三角矩阵}\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &2\ &2\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{5}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &-\frac{2}{3}\ &1\ &0\ &0\ &0\ \\ &0\ &\frac{2}{3}\ &\frac{5}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &-\frac{2}{3}\ &0\ &1\ &0\ &0\ \\ &0\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{5}{3}\ &\frac{2}{3}\ &-\frac{2}{3}\ &0\ &0\ &1\ &0\ \\ &0\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{5}{3}\ &-\frac{2}{3}\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &2\ &2\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{5}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &-\frac{2}{3}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{7}{5}\ &\frac{2}{5}\ &\frac{2}{5}\ &-\frac{2}{5}\ &-\frac{2}{5}\ &1\ &0\ &0\ \\ &0\ &0\ &\frac{2}{5}\ &\frac{7}{5}\ &\frac{2}{5}\ &-\frac{2}{5}\ &-\frac{2}{5}\ &0\ &1\ &0\ \\ &0\ &0\ &\frac{2}{5}\ &\frac{2}{5}\ &\frac{7}{5}\ &-\frac{2}{5}\ &-\frac{2}{5}\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &2\ &2\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{5}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &-\frac{2}{3}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{7}{5}\ &\frac{2}{5}\ &\frac{2}{5}\ &-\frac{2}{5}\ &-\frac{2}{5}\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &\frac{2}{7}\ &-\frac{2}{7}\ &-\frac{2}{7}\ &-\frac{2}{7}\ &1\ &0\ \\ &0\ &0\ &0\ &\frac{2}{7}\ &\frac{9}{7}\ &-\frac{2}{7}\ &-\frac{2}{7}\ &-\frac{2}{7}\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &2\ &2\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{5}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &-\frac{2}{3}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{7}{5}\ &\frac{2}{5}\ &\frac{2}{5}\ &-\frac{2}{5}\ &-\frac{2}{5}\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &\frac{2}{7}\ &-\frac{2}{7}\ &-\frac{2}{7}\ &-\frac{2}{7}\ &1\ &0\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将对角线以上的元素化为0}\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &2\ &0\ &\frac{15}{11}\ &\frac{4}{11}\ &\frac{4}{11}\ &\frac{4}{11}\ &-\frac{18}{11}\ \\ &0\ &\frac{5}{3}\ &\frac{2}{3}\ &\frac{2}{3}\ &0\ &-\frac{6}{11}\ &\frac{37}{33}\ &\frac{4}{33}\ &\frac{4}{33}\ &-\frac{6}{11}\ \\ &0\ &0\ &\frac{7}{5}\ &\frac{2}{5}\ &0\ &-\frac{18}{55}\ &-\frac{18}{55}\ &\frac{59}{55}\ &\frac{4}{55}\ &-\frac{18}{55}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &2\ &0\ &0\ &\frac{19}{11}\ &\frac{8}{11}\ &\frac{8}{11}\ &-\frac{14}{11}\ &-\frac{14}{11}\ \\ &0\ &\frac{5}{3}\ &\frac{2}{3}\ &0\ &0\ &-\frac{14}{33}\ &\frac{41}{33}\ &\frac{8}{33}\ &-\frac{14}{33}\ &-\frac{14}{33}\ \\ &0\ &0\ &\frac{7}{5}\ &0\ &0\ &-\frac{14}{55}\ &-\frac{14}{55}\ &\frac{63}{55}\ &-\frac{14}{55}\ &-\frac{14}{55}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &2\ &0\ &0\ &0\ &\frac{23}{11}\ &\frac{12}{11}\ &-\frac{10}{11}\ &-\frac{10}{11}\ &-\frac{10}{11}\ \\ &0\ &\frac{5}{3}\ &0\ &0\ &0\ &-\frac{10}{33}\ &\frac{15}{11}\ &-\frac{10}{33}\ &-\frac{10}{33}\ &-\frac{10}{33}\ \\ &0\ &0\ &\frac{7}{5}\ &0\ &0\ &-\frac{14}{55}\ &-\frac{14}{55}\ &\frac{63}{55}\ &-\frac{14}{55}\ &-\frac{14}{55}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &3\ &0\ &0\ &0\ &0\ &\frac{27}{11}\ &-\frac{6}{11}\ &-\frac{6}{11}\ &-\frac{6}{11}\ &-\frac{6}{11}\ \\ &0\ &\frac{5}{3}\ &0\ &0\ &0\ &-\frac{10}{33}\ &\frac{15}{11}\ &-\frac{10}{33}\ &-\frac{10}{33}\ &-\frac{10}{33}\ \\ &0\ &0\ &\frac{7}{5}\ &0\ &0\ &-\frac{14}{55}\ &-\frac{14}{55}\ &\frac{63}{55}\ &-\frac{14}{55}\ &-\frac{14}{55}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将主对角线元素化为1}\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &\frac{5}{3}\ &0\ &0\ &0\ &-\frac{10}{33}\ &\frac{15}{11}\ &-\frac{10}{33}\ &-\frac{10}{33}\ &-\frac{10}{33}\ \\ &0\ &0\ &\frac{7}{5}\ &0\ &0\ &-\frac{14}{55}\ &-\frac{14}{55}\ &\frac{63}{55}\ &-\frac{14}{55}\ &-\frac{14}{55}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &\frac{7}{5}\ &0\ &0\ &-\frac{14}{55}\ &-\frac{14}{55}\ &\frac{63}{55}\ &-\frac{14}{55}\ &-\frac{14}{55}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &0\ &\frac{9}{7}\ &0\ &-\frac{18}{77}\ &-\frac{18}{77}\ &-\frac{18}{77}\ &\frac{81}{77}\ &-\frac{18}{77}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &0\ &1\ &0\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &0\ &0\ &\frac{11}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &-\frac{2}{9}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {cccccc | ccccc} &1\ &0\ &0\ &0\ &0\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &1\ &0\ &0\ &0\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &1\ &0\ &0\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &0\ &1\ &0\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ \\ &0\ &0\ &0\ &0\ &1\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ \\\end{array} \right )\\\\&\color{grey}{所求的逆矩阵为:}\\&\begin{pmatrix} &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ \\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ &-\frac{2}{11}\ \\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &-\frac{2}{11}\ &\frac{9}{11}\ \end{pmatrix}\end{aligned}$$
你的问题在这里没有得到解决?请到 
热门难题
 里面看看吧!
返 回
矩阵的初等变换:
定义:
对矩阵的行(列)施行下列三种变换都成为矩阵的
初等变换
:
(1)互换矩阵两行(列)的位置;
(2)用非零常数λ乘矩阵的某行(列);
(3)将矩阵某行(列)的γ倍加到矩阵的另一行(列)上。
新增加
学习笔记(安卓版)百度网盘快速下载
应用程序,欢迎使用。
新增加
学习笔记(安卓版)本站下载
应用程序,欢迎使用。
新增线性代数
行列式
的计算,欢迎使用。
数学计算和一元方程已经支持
正割函数
和
余割函数
,欢迎使用。
新增加
贷款计算器
模块(具体位置:数学运算 >
贷款计算器
),欢迎使用。