数学
         
语言:中文    Language:English
求逆矩阵:
    输入一个可逆矩阵,每个元用逗号隔开,每行用分号结尾。
    注意,不支持支持数学函数和变量。
    当前位置:线性代数 >求逆矩阵 >逆矩阵计算历史 >答案

$$\begin{aligned}&\\ \color{black}{计算矩阵}& \ \ \begin{pmatrix} &4\ &3\ &3\ &3\ &3\ &3\ \\ &3\ &4\ &3\ &3\ &3\ &3\ \\ &3\ &3\ &4\ &3\ &3\ &3\ \\ &3\ &3\ &3\ &4\ &3\ &3\ \\ &3\ &3\ &3\ &3\ &4\ &3\ \\ &3\ &3\ &3\ &3\ &3\ &4\ \end{pmatrix}\color{black}{的逆矩阵。}\\ \\解:&\\ &\begin{pmatrix} &4\ &3\ &3\ &3\ &3\ &3\ \\ &3\ &4\ &3\ &3\ &3\ &3\ \\ &3\ &3\ &4\ &3\ &3\ &3\ \\ &3\ &3\ &3\ &4\ &3\ &3\ \\ &3\ &3\ &3\ &3\ &4\ &3\ \\ &3\ &3\ &3\ &3\ &3\ &4\ \end{pmatrix}\\\\&\color{grey}{用矩阵的初等变换来求逆矩阵:}\\&\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &3\ &1\ &0\ &0\ &0\ &0\ &0\ \\ &3\ &4\ &3\ &3\ &3\ &3\ &0\ &1\ &0\ &0\ &0\ &0\ \\ &3\ &3\ &4\ &3\ &3\ &3\ &0\ &0\ &1\ &0\ &0\ &0\ \\ &3\ &3\ &3\ &4\ &3\ &3\ &0\ &0\ &0\ &1\ &0\ &0\ \\ &3\ &3\ &3\ &3\ &4\ &3\ &0\ &0\ &0\ &0\ &1\ &0\ \\ &3\ &3\ &3\ &3\ &3\ &4\ &0\ &0\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{将已知矩阵化为上三角矩阵}\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &3\ &1\ &0\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{3}{4}\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &0\ &1\ &0\ &0\ &0\ \\ &0\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &0\ &0\ &1\ &0\ &0\ \\ &0\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{7}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &0\ &0\ &0\ &1\ &0\ \\ &0\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{7}{4}\ &-\frac{3}{4}\ &0\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &3\ &1\ &0\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{10}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{3}{7}\ &\frac{10}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &0\ &1\ &0\ &0\ \\ &0\ &0\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{10}{7}\ &\frac{3}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &0\ &0\ &1\ &0\ \\ &0\ &0\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{10}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &3\ &1\ &0\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{10}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &\frac{3}{10}\ &\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &\frac{3}{10}\ &\frac{13}{10}\ &\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &0\ &1\ &0\ \\ &0\ &0\ &0\ &\frac{3}{10}\ &\frac{3}{10}\ &\frac{13}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &3\ &1\ &0\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{10}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &\frac{3}{10}\ &\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &1\ &0\ \\ &0\ &0\ &0\ &0\ &\frac{3}{13}\ &\frac{16}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &3\ &1\ &0\ &0\ &0\ &0\ &0\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &-\frac{3}{4}\ &1\ &0\ &0\ &0\ &0\ \\ &0\ &0\ &\frac{10}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &-\frac{3}{7}\ &-\frac{3}{7}\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &\frac{3}{10}\ &\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &-\frac{3}{10}\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &-\frac{3}{13}\ &1\ &0\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将对角线以上的元素化为0}\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &3\ &0\ &\frac{28}{19}\ &\frac{9}{19}\ &\frac{9}{19}\ &\frac{9}{19}\ &\frac{9}{19}\ &-\frac{48}{19}\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &0\ &-\frac{12}{19}\ &\frac{85}{76}\ &\frac{9}{76}\ &\frac{9}{76}\ &\frac{9}{76}\ &-\frac{12}{19}\ \\ &0\ &0\ &\frac{10}{7}\ &\frac{3}{7}\ &\frac{3}{7}\ &0\ &-\frac{48}{133}\ &-\frac{48}{133}\ &\frac{142}{133}\ &\frac{9}{133}\ &\frac{9}{133}\ &-\frac{48}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &\frac{3}{10}\ &0\ &-\frac{24}{95}\ &-\frac{24}{95}\ &-\frac{24}{95}\ &\frac{199}{190}\ &\frac{9}{190}\ &-\frac{24}{95}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &3\ &0\ &0\ &\frac{37}{19}\ &\frac{18}{19}\ &\frac{18}{19}\ &\frac{18}{19}\ &-\frac{39}{19}\ &-\frac{39}{19}\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &\frac{3}{4}\ &0\ &0\ &-\frac{39}{76}\ &\frac{47}{38}\ &\frac{9}{38}\ &\frac{9}{38}\ &-\frac{39}{76}\ &-\frac{39}{76}\ \\ &0\ &0\ &\frac{10}{7}\ &\frac{3}{7}\ &0\ &0\ &-\frac{39}{133}\ &-\frac{39}{133}\ &\frac{151}{133}\ &\frac{18}{133}\ &-\frac{39}{133}\ &-\frac{39}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &3\ &0\ &0\ &0\ &\frac{46}{19}\ &\frac{27}{19}\ &\frac{27}{19}\ &-\frac{30}{19}\ &-\frac{30}{19}\ &-\frac{30}{19}\ \\ &0\ &\frac{7}{4}\ &\frac{3}{4}\ &0\ &0\ &0\ &-\frac{15}{38}\ &\frac{103}{76}\ &\frac{27}{76}\ &-\frac{15}{38}\ &-\frac{15}{38}\ &-\frac{15}{38}\ \\ &0\ &0\ &\frac{10}{7}\ &0\ &0\ &0\ &-\frac{30}{133}\ &-\frac{30}{133}\ &\frac{160}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &3\ &0\ &0\ &0\ &0\ &\frac{55}{19}\ &\frac{36}{19}\ &-\frac{21}{19}\ &-\frac{21}{19}\ &-\frac{21}{19}\ &-\frac{21}{19}\ \\ &0\ &\frac{7}{4}\ &0\ &0\ &0\ &0\ &-\frac{21}{76}\ &\frac{28}{19}\ &-\frac{21}{76}\ &-\frac{21}{76}\ &-\frac{21}{76}\ &-\frac{21}{76}\ \\ &0\ &0\ &\frac{10}{7}\ &0\ &0\ &0\ &-\frac{30}{133}\ &-\frac{30}{133}\ &\frac{160}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &4\ &0\ &0\ &0\ &0\ &0\ &\frac{64}{19}\ &-\frac{12}{19}\ &-\frac{12}{19}\ &-\frac{12}{19}\ &-\frac{12}{19}\ &-\frac{12}{19}\ \\ &0\ &\frac{7}{4}\ &0\ &0\ &0\ &0\ &-\frac{21}{76}\ &\frac{28}{19}\ &-\frac{21}{76}\ &-\frac{21}{76}\ &-\frac{21}{76}\ &-\frac{21}{76}\ \\ &0\ &0\ &\frac{10}{7}\ &0\ &0\ &0\ &-\frac{30}{133}\ &-\frac{30}{133}\ &\frac{160}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\&\color{grey}{将主对角线元素化为1}\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &1\ &0\ &0\ &0\ &0\ &0\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &\frac{7}{4}\ &0\ &0\ &0\ &0\ &-\frac{21}{76}\ &\frac{28}{19}\ &-\frac{21}{76}\ &-\frac{21}{76}\ &-\frac{21}{76}\ &-\frac{21}{76}\ \\ &0\ &0\ &\frac{10}{7}\ &0\ &0\ &0\ &-\frac{30}{133}\ &-\frac{30}{133}\ &\frac{160}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &1\ &0\ &0\ &0\ &0\ &0\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &1\ &0\ &0\ &0\ &0\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &\frac{10}{7}\ &0\ &0\ &0\ &-\frac{30}{133}\ &-\frac{30}{133}\ &\frac{160}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ &-\frac{30}{133}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &1\ &0\ &0\ &0\ &0\ &0\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &1\ &0\ &0\ &0\ &0\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &1\ &0\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &\frac{13}{10}\ &0\ &0\ &-\frac{39}{190}\ &-\frac{39}{190}\ &-\frac{39}{190}\ &\frac{104}{95}\ &-\frac{39}{190}\ &-\frac{39}{190}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &1\ &0\ &0\ &0\ &0\ &0\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &1\ &0\ &0\ &0\ &0\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &1\ &0\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &1\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &0\ &\frac{16}{13}\ &0\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &-\frac{48}{247}\ &\frac{256}{247}\ &-\frac{48}{247}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &1\ &0\ &0\ &0\ &0\ &0\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &1\ &0\ &0\ &0\ &0\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &1\ &0\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &1\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &0\ &1\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &0\ &0\ &\frac{19}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &-\frac{3}{16}\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccccc | cccccc} &1\ &0\ &0\ &0\ &0\ &0\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &1\ &0\ &0\ &0\ &0\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &1\ &0\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &1\ &0\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &0\ &1\ &0\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ \\ &0\ &0\ &0\ &0\ &0\ &1\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ \\\end{array} \right )\\\\&\color{grey}{所求的逆矩阵为:}\\&\begin{pmatrix} &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ \\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ &-\frac{3}{19}\ \\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &-\frac{3}{19}\ &\frac{16}{19}\ \end{pmatrix}\end{aligned}$$

你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


矩阵的初等变换:


定义:对矩阵的行(列)施行下列三种变换都成为矩阵的初等变换
(1)互换矩阵两行(列)的位置;
(2)用非零常数λ乘矩阵的某行(列);
(3)将矩阵某行(列)的γ倍加到矩阵的另一行(列)上。



  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。