数学
         
语言:中文    Language:English
求逆矩阵:
    输入一个可逆矩阵,每个元用逗号隔开,每行用分号结尾。
    注意,不支持支持数学函数和变量。
    当前位置:线性代数 >求逆矩阵 >逆矩阵计算历史 >答案

$$\begin{aligned}&\\ \color{black}{计算矩阵}& \ \ \begin{pmatrix} &-1\ &1\ &1\ &1\ \\ &1\ &-1\ &1\ &1\ \\ &1\ &1\ &-1\ &1\ \\ &1\ &1\ &1\ &-1\ \end{pmatrix}\color{black}{的逆矩阵。}\\ \\解:&\\ &\begin{pmatrix} &-1\ &1\ &1\ &1\ \\ &1\ &-1\ &1\ &1\ \\ &1\ &1\ &-1\ &1\ \\ &1\ &1\ &1\ &-1\ \end{pmatrix}\\\\&\color{grey}{用矩阵的初等变换来求逆矩阵:}\\&\left (\begin{array} {ccccc | cccc} &-1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &1\ &-1\ &1\ &1\ &0\ &1\ &0\ &0\ \\ &1\ &1\ &-1\ &1\ &0\ &0\ &1\ &0\ \\ &1\ &1\ &1\ &-1\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{将已知矩阵化为上三角矩阵}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &-1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &0\ &0\ &2\ &2\ &1\ &1\ &0\ &0\ \\ &0\ &2\ &0\ &2\ &1\ &0\ &1\ &0\ \\ &0\ &2\ &2\ &0\ &1\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &-1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &0\ &2\ &0\ &2\ &1\ &0\ &1\ &0\ \\ &0\ &0\ &2\ &2\ &1\ &1\ &0\ &0\ \\ &0\ &0\ &2\ &-2\ &0\ &0\ &-1\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &-1\ &1\ &1\ &1\ &1\ &0\ &0\ &0\ \\ &0\ &2\ &0\ &2\ &1\ &0\ &1\ &0\ \\ &0\ &0\ &2\ &2\ &1\ &1\ &0\ &0\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\&\color{grey}{将对角线以上的元素化为0}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &-1\ &1\ &1\ &0\ &\frac{3}{4}\ &-\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &2\ &0\ &0\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &2\ &0\ &\frac{1}{2}\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &-1\ &1\ &0\ &0\ &\frac{1}{2}\ &-\frac{1}{2}\ &0\ &0\ \\ &0\ &2\ &0\ &0\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &2\ &0\ &\frac{1}{2}\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &-1\ &0\ &0\ &0\ &\frac{1}{4}\ &-\frac{1}{4}\ &-\frac{1}{4}\ &-\frac{1}{4}\ \\ &0\ &2\ &0\ &0\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &2\ &0\ &\frac{1}{2}\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\&\color{grey}{将主对角线元素化为1}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &2\ &0\ &0\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &2\ &0\ &\frac{1}{2}\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &1\ &0\ &0\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &0\ &2\ &0\ &\frac{1}{2}\ &\frac{1}{2}\ &-\frac{1}{2}\ &\frac{1}{2}\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &1\ &0\ &0\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &0\ &1\ &0\ &\frac{1}{4}\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &0\ &0\ &-4\ &-1\ &-1\ &-1\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &1\ &0\ &0\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &0\ &1\ &0\ &\frac{1}{4}\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ \\ &0\ &0\ &0\ &1\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &-\frac{1}{4}\ \\\end{array} \right )\\\\&\color{grey}{所求的逆矩阵为:}\\&\begin{pmatrix} &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &-\frac{1}{4}\ &\frac{1}{4}\ \\ &\frac{1}{4}\ &\frac{1}{4}\ &\frac{1}{4}\ &-\frac{1}{4}\ \end{pmatrix}\end{aligned}$$

你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


矩阵的初等变换:


定义:对矩阵的行(列)施行下列三种变换都成为矩阵的初等变换
(1)互换矩阵两行(列)的位置;
(2)用非零常数λ乘矩阵的某行(列);
(3)将矩阵某行(列)的γ倍加到矩阵的另一行(列)上。



  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。