数学
         
语言:中文    Language:English
求逆矩阵:
    输入一个可逆矩阵,每个元用逗号隔开,每行用分号结尾。
    注意,不支持支持数学函数和变量。
    当前位置:线性代数 >求逆矩阵 >逆矩阵计算历史 >答案

$$\begin{aligned}&\\ \color{black}{计算矩阵}& \ \ \begin{pmatrix} &1\ &5\ &4\ &7\ \\ &6\ &3\ &9\ &8\ \\ &4\ &4\ &7\ &5\ \\ &5\ &1\ &8\ &4\ \end{pmatrix}\color{black}{的逆矩阵。}\\ \\解:&\\ &\begin{pmatrix} &1\ &5\ &4\ &7\ \\ &6\ &3\ &9\ &8\ \\ &4\ &4\ &7\ &5\ \\ &5\ &1\ &8\ &4\ \end{pmatrix}\\\\&\color{grey}{用矩阵的初等变换来求逆矩阵:}\\&\left (\begin{array} {ccccc | cccc} &1\ &5\ &4\ &7\ &1\ &0\ &0\ &0\ \\ &6\ &3\ &9\ &8\ &0\ &1\ &0\ &0\ \\ &4\ &4\ &7\ &5\ &0\ &0\ &1\ &0\ \\ &5\ &1\ &8\ &4\ &0\ &0\ &0\ &1\ \\\end{array} \right )\\\\&\color{grey}{将已知矩阵化为上三角矩阵}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &5\ &4\ &7\ &1\ &0\ &0\ &0\ \\ &0\ &-27\ &-15\ &-34\ &-6\ &1\ &0\ &0\ \\ &0\ &-16\ &-9\ &-23\ &-4\ &0\ &1\ &0\ \\ &0\ &-24\ &-12\ &-31\ &-5\ &0\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &5\ &4\ &7\ &1\ &0\ &0\ &0\ \\ &0\ &-27\ &-15\ &-34\ &-6\ &1\ &0\ &0\ \\ &0\ &0\ &-\frac{1}{9}\ &-\frac{77}{27}\ &-\frac{4}{9}\ &-\frac{16}{27}\ &1\ &0\ \\ &0\ &0\ &\frac{4}{3}\ &-\frac{7}{9}\ &\frac{1}{3}\ &-\frac{8}{9}\ &0\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &5\ &4\ &7\ &1\ &0\ &0\ &0\ \\ &0\ &-27\ &-15\ &-34\ &-6\ &1\ &0\ &0\ \\ &0\ &0\ &-\frac{1}{9}\ &-\frac{77}{27}\ &-\frac{4}{9}\ &-\frac{16}{27}\ &1\ &0\ \\ &0\ &0\ &0\ &-35\ &-5\ &-8\ &12\ &1\ \\\end{array} \right )\\\\&\color{grey}{将对角线以上的元素化为0}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &5\ &4\ &0\ &0\ &-\frac{8}{5}\ &\frac{12}{5}\ &\frac{1}{5}\ \\ &0\ &-27\ &-15\ &0\ &-\frac{8}{7}\ &\frac{307}{35}\ &-\frac{408}{35}\ &-\frac{34}{35}\ \\ &0\ &0\ &-\frac{1}{9}\ &0\ &-\frac{1}{27}\ &\frac{8}{135}\ &\frac{1}{45}\ &-\frac{11}{135}\ \\ &0\ &0\ &0\ &-35\ &-5\ &-8\ &12\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &5\ &0\ &0\ &-\frac{4}{3}\ &\frac{8}{15}\ &\frac{16}{5}\ &-\frac{41}{15}\ \\ &0\ &-27\ &0\ &0\ &\frac{27}{7}\ &\frac{27}{35}\ &-\frac{513}{35}\ &\frac{351}{35}\ \\ &0\ &0\ &-\frac{1}{9}\ &0\ &-\frac{1}{27}\ &\frac{8}{135}\ &\frac{1}{45}\ &-\frac{11}{135}\ \\ &0\ &0\ &0\ &-35\ &-5\ &-8\ &12\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{13}{21}\ &\frac{71}{105}\ &\frac{17}{35}\ &-\frac{92}{105}\ \\ &0\ &-27\ &0\ &0\ &\frac{27}{7}\ &\frac{27}{35}\ &-\frac{513}{35}\ &\frac{351}{35}\ \\ &0\ &0\ &-\frac{1}{9}\ &0\ &-\frac{1}{27}\ &\frac{8}{135}\ &\frac{1}{45}\ &-\frac{11}{135}\ \\ &0\ &0\ &0\ &-35\ &-5\ &-8\ &12\ &1\ \\\end{array} \right )\\\\&\color{grey}{将主对角线元素化为1}\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{13}{21}\ &\frac{71}{105}\ &\frac{17}{35}\ &-\frac{92}{105}\ \\ &0\ &1\ &0\ &0\ &-\frac{1}{7}\ &-\frac{1}{35}\ &\frac{19}{35}\ &-\frac{13}{35}\ \\ &0\ &0\ &-\frac{1}{9}\ &0\ &-\frac{1}{27}\ &\frac{8}{135}\ &\frac{1}{45}\ &-\frac{11}{135}\ \\ &0\ &0\ &0\ &-35\ &-5\ &-8\ &12\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{13}{21}\ &\frac{71}{105}\ &\frac{17}{35}\ &-\frac{92}{105}\ \\ &0\ &1\ &0\ &0\ &-\frac{1}{7}\ &-\frac{1}{35}\ &\frac{19}{35}\ &-\frac{13}{35}\ \\ &0\ &0\ &1\ &0\ &\frac{1}{3}\ &-\frac{8}{15}\ &-\frac{1}{5}\ &\frac{11}{15}\ \\ &0\ &0\ &0\ &-35\ &-5\ &-8\ &12\ &1\ \\\end{array} \right )\\\\->\ \ &\left (\begin{array} {ccccc | cccc} &1\ &0\ &0\ &0\ &-\frac{13}{21}\ &\frac{71}{105}\ &\frac{17}{35}\ &-\frac{92}{105}\ \\ &0\ &1\ &0\ &0\ &-\frac{1}{7}\ &-\frac{1}{35}\ &\frac{19}{35}\ &-\frac{13}{35}\ \\ &0\ &0\ &1\ &0\ &\frac{1}{3}\ &-\frac{8}{15}\ &-\frac{1}{5}\ &\frac{11}{15}\ \\ &0\ &0\ &0\ &1\ &\frac{1}{7}\ &\frac{8}{35}\ &-\frac{12}{35}\ &-\frac{1}{35}\ \\\end{array} \right )\\\\&\color{grey}{所求的逆矩阵为:}\\&\begin{pmatrix} &-\frac{13}{21}\ &\frac{71}{105}\ &\frac{17}{35}\ &-\frac{92}{105}\ \\ &-\frac{1}{7}\ &-\frac{1}{35}\ &\frac{19}{35}\ &-\frac{13}{35}\ \\ &\frac{1}{3}\ &-\frac{8}{15}\ &-\frac{1}{5}\ &\frac{11}{15}\ \\ &\frac{1}{7}\ &\frac{8}{35}\ &-\frac{12}{35}\ &-\frac{1}{35}\ \end{pmatrix}\end{aligned}$$

你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


矩阵的初等变换:


定义:对矩阵的行(列)施行下列三种变换都成为矩阵的初等变换
(1)互换矩阵两行(列)的位置;
(2)用非零常数λ乘矩阵的某行(列);
(3)将矩阵某行(列)的γ倍加到矩阵的另一行(列)上。



  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。