数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数arcsin(ln(cos(x))) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(ln(cos(x)))\right)}{dx}\\=&(\frac{(\frac{-sin(x)}{(cos(x))})}{((1 - (ln(cos(x)))^{2})^{\frac{1}{2}})})\\=&\frac{-sin(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sin(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos(x)}\right)}{dx}\\=&\frac{-(\frac{\frac{-1}{2}(\frac{-2ln(cos(x))*-sin(x)}{(cos(x))} + 0)}{(-ln^{2}(cos(x)) + 1)^{\frac{3}{2}}})sin(x)}{cos(x)} - \frac{cos(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos(x)} - \frac{sin(x)sin(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos^{2}(x)}\\=&\frac{ln(cos(x))sin^{2}(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{3}{2}}cos^{2}(x)} - \frac{sin^{2}(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos^{2}(x)} - \frac{1}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回