Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ arcsin(ln(cos(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(ln(cos(x)))\right)}{dx}\\=&(\frac{(\frac{-sin(x)}{(cos(x))})}{((1 - (ln(cos(x)))^{2})^{\frac{1}{2}})})\\=&\frac{-sin(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos(x)}\right)}{dx}\\=&\frac{-(\frac{\frac{-1}{2}(\frac{-2ln(cos(x))*-sin(x)}{(cos(x))} + 0)}{(-ln^{2}(cos(x)) + 1)^{\frac{3}{2}}})sin(x)}{cos(x)} - \frac{cos(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos(x)} - \frac{sin(x)sin(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos^{2}(x)}\\=&\frac{ln(cos(x))sin^{2}(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{3}{2}}cos^{2}(x)} - \frac{sin^{2}(x)}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}cos^{2}(x)} - \frac{1}{(-ln^{2}(cos(x)) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return