数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(\frac{1000{x}^{2}}{((1 - 10x)(15 - 100x))})}{5} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{200x^{2}}{(-100x + 15)(-10x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{200x^{2}}{(-100x + 15)(-10x + 1)}\right)}{dx}\\=&\frac{200(\frac{-(-100 + 0)}{(-100x + 15)^{2}})x^{2}}{(-10x + 1)} + \frac{200(\frac{-(-10 + 0)}{(-10x + 1)^{2}})x^{2}}{(-100x + 15)} + \frac{200*2x}{(-100x + 15)(-10x + 1)}\\=&\frac{20000x^{2}}{(-100x + 15)^{2}(-10x + 1)} + \frac{2000x^{2}}{(-10x + 1)^{2}(-100x + 15)} + \frac{400x}{(-10x + 1)(-100x + 15)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回