There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{1000{x}^{2}}{((1 - 10x)(15 - 100x))})}{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{200x^{2}}{(-100x + 15)(-10x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{200x^{2}}{(-100x + 15)(-10x + 1)}\right)}{dx}\\=&\frac{200(\frac{-(-100 + 0)}{(-100x + 15)^{2}})x^{2}}{(-10x + 1)} + \frac{200(\frac{-(-10 + 0)}{(-10x + 1)^{2}})x^{2}}{(-100x + 15)} + \frac{200*2x}{(-100x + 15)(-10x + 1)}\\=&\frac{20000x^{2}}{(-100x + 15)^{2}(-10x + 1)} + \frac{2000x^{2}}{(-10x + 1)^{2}(-100x + 15)} + \frac{400x}{(-10x + 1)(-100x + 15)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !