数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{{cos(x)}^{sin(x)}}^{cos(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {{cos(x)}^{sin(x)}}^{cos(x)}\right)}{dx}\\=&({{cos(x)}^{sin(x)}}^{cos(x)}((-sin(x))ln({cos(x)}^{sin(x)}) + \frac{(cos(x))(({cos(x)}^{sin(x)}((cos(x))ln(cos(x)) + \frac{(sin(x))(-sin(x))}{(cos(x))})))}{({cos(x)}^{sin(x)})}))\\=&-{{cos(x)}^{sin(x)}}^{cos(x)}ln({cos(x)}^{sin(x)})sin(x) + {{cos(x)}^{sin(x)}}^{cos(x)}ln(cos(x))cos^{2}(x) - {{cos(x)}^{sin(x)}}^{cos(x)}sin^{2}(x)\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回