Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{cos(x)}^{sin(x)}}^{cos(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{cos(x)}^{sin(x)}}^{cos(x)}\right)}{dx}\\=&({{cos(x)}^{sin(x)}}^{cos(x)}((-sin(x))ln({cos(x)}^{sin(x)}) + \frac{(cos(x))(({cos(x)}^{sin(x)}((cos(x))ln(cos(x)) + \frac{(sin(x))(-sin(x))}{(cos(x))})))}{({cos(x)}^{sin(x)})}))\\=&-{{cos(x)}^{sin(x)}}^{cos(x)}ln({cos(x)}^{sin(x)})sin(x) + {{cos(x)}^{sin(x)}}^{cos(x)}ln(cos(x))cos^{2}(x) - {{cos(x)}^{sin(x)}}^{cos(x)}sin^{2}(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return