数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(-2{x}^{2} + 100x + 30000)}{(20000 - 100x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-2x^{2}}{(-100x + 20000)} + \frac{100x}{(-100x + 20000)} + \frac{30000}{(-100x + 20000)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-2x^{2}}{(-100x + 20000)} + \frac{100x}{(-100x + 20000)} + \frac{30000}{(-100x + 20000)}\right)}{dx}\\=&-2(\frac{-(-100 + 0)}{(-100x + 20000)^{2}})x^{2} - \frac{2*2x}{(-100x + 20000)} + 100(\frac{-(-100 + 0)}{(-100x + 20000)^{2}})x + \frac{100}{(-100x + 20000)} + 30000(\frac{-(-100 + 0)}{(-100x + 20000)^{2}})\\=&\frac{-200x^{2}}{(-100x + 20000)^{2}} - \frac{4x}{(-100x + 20000)} + \frac{10000x}{(-100x + 20000)^{2}} + \frac{3000000}{(-100x + 20000)^{2}} + \frac{100}{(-100x + 20000)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回