数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln(3x)}{({x}^{7}ln({x}^{2}))} + {(ln(\frac{2}{x}))}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(3x)}{x^{7}ln(x^{2})} + ln^{3}(\frac{2}{x})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(3x)}{x^{7}ln(x^{2})} + ln^{3}(\frac{2}{x})\right)}{dx}\\=&\frac{-7ln(3x)}{x^{8}ln(x^{2})} + \frac{3}{x^{7}(3x)ln(x^{2})} + \frac{ln(3x)*-2x}{x^{7}ln^{2}(x^{2})(x^{2})} + \frac{3ln^{2}(\frac{2}{x})*2*-1}{(\frac{2}{x})x^{2}}\\=&\frac{-7ln(3x)}{x^{8}ln(x^{2})} - \frac{2ln(3x)}{x^{8}ln^{2}(x^{2})} + \frac{1}{x^{8}ln(x^{2})} - \frac{3ln^{2}(\frac{2}{x})}{x}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回