There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(3x)}{({x}^{7}ln({x}^{2}))} + {(ln(\frac{2}{x}))}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(3x)}{x^{7}ln(x^{2})} + ln^{3}(\frac{2}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(3x)}{x^{7}ln(x^{2})} + ln^{3}(\frac{2}{x})\right)}{dx}\\=&\frac{-7ln(3x)}{x^{8}ln(x^{2})} + \frac{3}{x^{7}(3x)ln(x^{2})} + \frac{ln(3x)*-2x}{x^{7}ln^{2}(x^{2})(x^{2})} + \frac{3ln^{2}(\frac{2}{x})*2*-1}{(\frac{2}{x})x^{2}}\\=&\frac{-7ln(3x)}{x^{8}ln(x^{2})} - \frac{2ln(3x)}{x^{8}ln^{2}(x^{2})} + \frac{1}{x^{8}ln(x^{2})} - \frac{3ln^{2}(\frac{2}{x})}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !