数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数xln(x + \frac{1}{x} - 1) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xln(x + \frac{1}{x} - 1)\right)}{dx}\\=&ln(x + \frac{1}{x} - 1) + \frac{x(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)}\\=&ln(x + \frac{1}{x} - 1) + \frac{x}{(x + \frac{1}{x} - 1)} - \frac{1}{(x + \frac{1}{x} - 1)x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( ln(x + \frac{1}{x} - 1) + \frac{x}{(x + \frac{1}{x} - 1)} - \frac{1}{(x + \frac{1}{x} - 1)x}\right)}{dx}\\=&\frac{(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)} + (\frac{-(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)^{2}})x + \frac{1}{(x + \frac{1}{x} - 1)} - \frac{(\frac{-(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)^{2}})}{x} - \frac{-1}{(x + \frac{1}{x} - 1)x^{2}}\\=&\frac{2}{(x + \frac{1}{x} - 1)^{2}x} - \frac{1}{(x + \frac{1}{x} - 1)^{2}x^{3}} - \frac{x}{(x + \frac{1}{x} - 1)^{2}} + \frac{2}{(x + \frac{1}{x} - 1)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回