There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ xln(x + \frac{1}{x} - 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x + \frac{1}{x} - 1)\right)}{dx}\\=&ln(x + \frac{1}{x} - 1) + \frac{x(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)}\\=&ln(x + \frac{1}{x} - 1) + \frac{x}{(x + \frac{1}{x} - 1)} - \frac{1}{(x + \frac{1}{x} - 1)x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ln(x + \frac{1}{x} - 1) + \frac{x}{(x + \frac{1}{x} - 1)} - \frac{1}{(x + \frac{1}{x} - 1)x}\right)}{dx}\\=&\frac{(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)} + (\frac{-(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)^{2}})x + \frac{1}{(x + \frac{1}{x} - 1)} - \frac{(\frac{-(1 + \frac{-1}{x^{2}} + 0)}{(x + \frac{1}{x} - 1)^{2}})}{x} - \frac{-1}{(x + \frac{1}{x} - 1)x^{2}}\\=&\frac{2}{(x + \frac{1}{x} - 1)^{2}x} - \frac{1}{(x + \frac{1}{x} - 1)^{2}x^{3}} - \frac{x}{(x + \frac{1}{x} - 1)^{2}} + \frac{2}{(x + \frac{1}{x} - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !