数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 r 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数r({2}^{\frac{1}{(wr)}} - 1) 关于 r 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = r{2}^{(\frac{1}{wr})} - r\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( r{2}^{(\frac{1}{wr})} - r\right)}{dr}\\=&{2}^{(\frac{1}{wr})} + r({2}^{(\frac{1}{wr})}((\frac{-1}{wr^{2}})ln(2) + \frac{(\frac{1}{wr})(0)}{(2)})) - 1\\=&{2}^{(\frac{1}{wr})} - \frac{{2}^{(\frac{1}{wr})}ln(2)}{wr} - 1\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {2}^{(\frac{1}{wr})} - \frac{{2}^{(\frac{1}{wr})}ln(2)}{wr} - 1\right)}{dr}\\=&({2}^{(\frac{1}{wr})}((\frac{-1}{wr^{2}})ln(2) + \frac{(\frac{1}{wr})(0)}{(2)})) - \frac{-{2}^{(\frac{1}{wr})}ln(2)}{wr^{2}} - \frac{({2}^{(\frac{1}{wr})}((\frac{-1}{wr^{2}})ln(2) + \frac{(\frac{1}{wr})(0)}{(2)}))ln(2)}{wr} - \frac{{2}^{(\frac{1}{wr})}*0}{wr(2)} + 0\\=&\frac{{2}^{(\frac{1}{wr})}ln^{2}(2)}{w^{2}r^{3}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回