There are 1 questions in this calculation: for each question, the 2 derivative of r is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ r({2}^{\frac{1}{(wr)}} - 1)\ with\ respect\ to\ r:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = r{2}^{(\frac{1}{wr})} - r\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( r{2}^{(\frac{1}{wr})} - r\right)}{dr}\\=&{2}^{(\frac{1}{wr})} + r({2}^{(\frac{1}{wr})}((\frac{-1}{wr^{2}})ln(2) + \frac{(\frac{1}{wr})(0)}{(2)})) - 1\\=&{2}^{(\frac{1}{wr})} - \frac{{2}^{(\frac{1}{wr})}ln(2)}{wr} - 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {2}^{(\frac{1}{wr})} - \frac{{2}^{(\frac{1}{wr})}ln(2)}{wr} - 1\right)}{dr}\\=&({2}^{(\frac{1}{wr})}((\frac{-1}{wr^{2}})ln(2) + \frac{(\frac{1}{wr})(0)}{(2)})) - \frac{-{2}^{(\frac{1}{wr})}ln(2)}{wr^{2}} - \frac{({2}^{(\frac{1}{wr})}((\frac{-1}{wr^{2}})ln(2) + \frac{(\frac{1}{wr})(0)}{(2)}))ln(2)}{wr} - \frac{{2}^{(\frac{1}{wr})}*0}{wr(2)} + 0\\=&\frac{{2}^{(\frac{1}{wr})}ln^{2}(2)}{w^{2}r^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !