数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数150sin(\frac{(4arctan(1))x}{1000}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 150sin(\frac{1}{250}xarctan(1))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 150sin(\frac{1}{250}xarctan(1))\right)}{dx}\\=&150cos(\frac{1}{250}xarctan(1))(\frac{1}{250}arctan(1) + \frac{1}{250}x(\frac{(0)}{(1 + (1)^{2})}))\\=&\frac{3cos(\frac{1}{250}xarctan(1))arctan(1)}{5}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{3cos(\frac{1}{250}xarctan(1))arctan(1)}{5}\right)}{dx}\\=&\frac{3*-sin(\frac{1}{250}xarctan(1))(\frac{1}{250}arctan(1) + \frac{1}{250}x(\frac{(0)}{(1 + (1)^{2})}))arctan(1)}{5} + \frac{3cos(\frac{1}{250}xarctan(1))(\frac{(0)}{(1 + (1)^{2})})}{5}\\=&\frac{-3sin(\frac{1}{250}xarctan(1))arctan^{2}(1)}{1250}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回