There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 150sin(\frac{(4arctan(1))x}{1000})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 150sin(\frac{1}{250}xarctan(1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 150sin(\frac{1}{250}xarctan(1))\right)}{dx}\\=&150cos(\frac{1}{250}xarctan(1))(\frac{1}{250}arctan(1) + \frac{1}{250}x(\frac{(0)}{(1 + (1)^{2})}))\\=&\frac{3cos(\frac{1}{250}xarctan(1))arctan(1)}{5}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{3cos(\frac{1}{250}xarctan(1))arctan(1)}{5}\right)}{dx}\\=&\frac{3*-sin(\frac{1}{250}xarctan(1))(\frac{1}{250}arctan(1) + \frac{1}{250}x(\frac{(0)}{(1 + (1)^{2})}))arctan(1)}{5} + \frac{3cos(\frac{1}{250}xarctan(1))(\frac{(0)}{(1 + (1)^{2})})}{5}\\=&\frac{-3sin(\frac{1}{250}xarctan(1))arctan^{2}(1)}{1250}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !