数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{10000}{(xlog_{x}^{10000})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{10000}{xlog(x, 10000)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{10000}{xlog(x, 10000)}\right)}{dx}\\=&\frac{10000*-1}{x^{2}log(x, 10000)} + \frac{10000(\frac{-(\frac{(0)}{(10000)} - \frac{(1)log_{x}^{10000}}{(x)})}{{\left(log(x, 10000)^{2}(ln(x))})}{x}\\=&\frac{10000}{x^{2}log(x, 10000)ln(x)} - \frac{10000}{x^{2}log(x, 10000)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{10000}{x^{2}log(x, 10000)ln(x)} - \frac{10000}{x^{2}log(x, 10000)}\right)}{dx}\\=&\frac{10000*-2}{x^{3}log(x, 10000)ln(x)} + \frac{10000(\frac{-(\frac{(0)}{(10000)} - \frac{(1)log_{x}^{10000}}{(x)})}{{\left(log(x, 10000)^{2}(ln(x))})}{x^{2}ln(x)} + \frac{10000*-1}{x^{2}log(x, 10000)ln^{2}(x)(x)} - \frac{10000*-2}{x^{3}log(x, 10000)} - \frac{10000(\frac{-(\frac{(0)}{(10000)} - \frac{(1)log_{x}^{10000}}{(x)})}{{\left(log(x, 10000)^{2}(ln(x))})}{x^{2}}\\=&\frac{-30000}{x^{3}log(x, 10000)ln(x)} + \frac{20000}{x^{3}log(x, 10000)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回