There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{10000}{(xlog_{x}^{10000})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{10000}{xlog(x, 10000)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{10000}{xlog(x, 10000)}\right)}{dx}\\=&\frac{10000*-1}{x^{2}log(x, 10000)} + \frac{10000(\frac{-(\frac{(0)}{(10000)} - \frac{(1)log_{x}^{10000}}{(x)})}{{\left(log(x, 10000)^{2}(ln(x))})}{x}\\=&\frac{10000}{x^{2}log(x, 10000)ln(x)} - \frac{10000}{x^{2}log(x, 10000)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{10000}{x^{2}log(x, 10000)ln(x)} - \frac{10000}{x^{2}log(x, 10000)}\right)}{dx}\\=&\frac{10000*-2}{x^{3}log(x, 10000)ln(x)} + \frac{10000(\frac{-(\frac{(0)}{(10000)} - \frac{(1)log_{x}^{10000}}{(x)})}{{\left(log(x, 10000)^{2}(ln(x))})}{x^{2}ln(x)} + \frac{10000*-1}{x^{2}log(x, 10000)ln^{2}(x)(x)} - \frac{10000*-2}{x^{3}log(x, 10000)} - \frac{10000(\frac{-(\frac{(0)}{(10000)} - \frac{(1)log_{x}^{10000}}{(x)})}{{\left(log(x, 10000)^{2}(ln(x))})}{x^{2}}\\=&\frac{-30000}{x^{3}log(x, 10000)ln(x)} + \frac{20000}{x^{3}log(x, 10000)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !