总述:本次共解1题。其中
☆方程1题
〖 1/1方程〗
作业:求方程 1-(1+X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X) = 11.72X 的解.
题型:方程
解:原方程:| | 1 | − | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | = | 293 25 | X |
去掉方程左边的括号:
| 方程左边 = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) |
| = | 1 | − | 1 | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | × | 1 | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 |
| = | 1 | − | 1 | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X |
| = | 1 | − | 1 | × | 1 | − | 1 | X | − | 1 | X | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
| = | 1 | − | 1 | − | 1 | X | − | 1 | X | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 |
| = | 0 | − | 1 | X | − | 1 | X | ( | 1 | + | X | ) | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) | − | 1 | X |
| = | - | 1 | X | − | 1 | X | × | 1 | − | 1 | X | X | − | 1 | X | ( | 1 | + | X | ) | ( | 1 | + | X | ) |
方程化为一般式后,有公因式:
( X - 0 )
由
X - 0 = 0
得:
不能由因式分解法得出的解:
X2≈-2.320853 ,保留6位小数
有 2个解。
解程的详细方法请参阅:《方程的解法》
你的问题在这里没有得到解决?请到 热门难题 里面看看吧!