There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(kx + b)}^{(a + 1)})(a + 1)}{k}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a(kx + b)^{(a + 1)}}{k} + \frac{(kx + b)^{(a + 1)}}{k}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a(kx + b)^{(a + 1)}}{k} + \frac{(kx + b)^{(a + 1)}}{k}\right)}{dx}\\=&\frac{a((kx + b)^{(a + 1)}((0 + 0)ln(kx + b) + \frac{(a + 1)(k + 0)}{(kx + b)}))}{k} + \frac{((kx + b)^{(a + 1)}((0 + 0)ln(kx + b) + \frac{(a + 1)(k + 0)}{(kx + b)}))}{k}\\=&\frac{a^{2}(kx + b)^{(a + 1)}}{(kx + b)} + \frac{2a(kx + b)^{(a + 1)}}{(kx + b)} + \frac{(kx + b)^{(a + 1)}}{(kx + b)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !