Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2(a(x)) + 3(b(x)))}{(a(x) + 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2ax}{(ax + 3)} + \frac{3bx}{(ax + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2ax}{(ax + 3)} + \frac{3bx}{(ax + 3)}\right)}{dx}\\=&2(\frac{-(a + 0)}{(ax + 3)^{2}})ax + \frac{2a}{(ax + 3)} + 3(\frac{-(a + 0)}{(ax + 3)^{2}})bx + \frac{3b}{(ax + 3)}\\=&\frac{-2a^{2}x}{(ax + 3)^{2}} - \frac{3abx}{(ax + 3)^{2}} + \frac{2a}{(ax + 3)} + \frac{3b}{(ax + 3)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return