There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{{(log_{2}^{x})}^{-1}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{\frac{1}{log(2, x)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{\frac{1}{log(2, x)}}\right)}{dx}\\=&({x}^{\frac{1}{log(2, x)}}(((\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{{\left(log(2, x)^{2}(ln(2))}))ln(x) + \frac{(\frac{1}{log(2, x)})(1)}{(x)}))\\=&\frac{-{x}^{\frac{1}{log(2, x)}}ln(x)}{x{\left(log(2, x)^{2}ln(2)} + \frac{{x}^{\frac{1}{log(2, x)}}}{xlog(2, x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !