There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ a(log_{b(log_{c}^{d})}^{e^{log_{f}^{g}}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = alog_{blog_{c}^{d}}^{e^{log_{f}^{g}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( alog_{blog_{c}^{d}}^{e^{log_{f}^{g}}}\right)}{dx}\\=&a(\frac{(\frac{(e^{log_{f}^{g}}(\frac{(\frac{(0)}{(g)} - \frac{(0)log_{f}^{g}}{(f)})}{(ln(f))}))}{(e^{log_{f}^{g}})} - \frac{(b(\frac{(\frac{(0)}{(d)} - \frac{(0)log_{c}^{d}}{(c)})}{(ln(c))}))log_{blog_{c}^{d}}^{e^{log_{f}^{g}}}}{(blog_{c}^{d})})}{(ln(blog_{c}^{d}))})\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !