There are 1 questions in this calculation: for each question, the 4 derivative of s is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ch(e^{s})\ with\ respect\ to\ s:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ch(e^{s})\right)}{ds}\\=&sh(e^{s})e^{s}\\=&e^{s}sh(e^{s})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{s}sh(e^{s})\right)}{ds}\\=&e^{s}sh(e^{s}) + e^{s}ch(e^{s})e^{s}\\=&e^{s}sh(e^{s}) + e^{{s}*{2}}ch(e^{s})\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( e^{s}sh(e^{s}) + e^{{s}*{2}}ch(e^{s})\right)}{ds}\\=&e^{s}sh(e^{s}) + e^{s}ch(e^{s})e^{s} + 2e^{s}e^{s}ch(e^{s}) + e^{{s}*{2}}sh(e^{s})e^{s}\\=&e^{s}sh(e^{s}) + 3e^{{s}*{2}}ch(e^{s}) + e^{{s}*{3}}sh(e^{s})\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( e^{s}sh(e^{s}) + 3e^{{s}*{2}}ch(e^{s}) + e^{{s}*{3}}sh(e^{s})\right)}{ds}\\=&e^{s}sh(e^{s}) + e^{s}ch(e^{s})e^{s} + 3*2e^{s}e^{s}ch(e^{s}) + 3e^{{s}*{2}}sh(e^{s})e^{s} + 3e^{{s}*{2}}e^{s}sh(e^{s}) + e^{{s}*{3}}ch(e^{s})e^{s}\\=&e^{s}sh(e^{s}) + 7e^{{s}*{2}}ch(e^{s}) + 6e^{{s}*{3}}sh(e^{s}) + e^{{s}*{4}}ch(e^{s})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !