Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{4{(35 + 600{x}^{-1})}^{2}}{(x + 15)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1440000}{(x + 15)x^{2}} + \frac{168000}{(x + 15)x} + \frac{4900}{(x + 15)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1440000}{(x + 15)x^{2}} + \frac{168000}{(x + 15)x} + \frac{4900}{(x + 15)}\right)}{dx}\\=&\frac{1440000(\frac{-(1 + 0)}{(x + 15)^{2}})}{x^{2}} + \frac{1440000*-2}{(x + 15)x^{3}} + \frac{168000(\frac{-(1 + 0)}{(x + 15)^{2}})}{x} + \frac{168000*-1}{(x + 15)x^{2}} + 4900(\frac{-(1 + 0)}{(x + 15)^{2}})\\=& - \frac{1440000}{(x + 15)^{2}x^{2}} - \frac{2880000}{(x + 15)x^{3}} - \frac{168000}{(x + 15)^{2}x} - \frac{168000}{(x + 15)x^{2}} - \frac{4900}{(x + 15)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return