Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ tan(180x + 90)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(180x + 90)\right)}{dx}\\=&sec^{2}(180x + 90)(180 + 0)\\=&180sec^{2}(180x + 90)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 180sec^{2}(180x + 90)\right)}{dx}\\=&180*2sec^{2}(180x + 90)tan(180x + 90)(180 + 0)\\=&64800tan(180x + 90)sec^{2}(180x + 90)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 64800tan(180x + 90)sec^{2}(180x + 90)\right)}{dx}\\=&64800sec^{2}(180x + 90)(180 + 0)sec^{2}(180x + 90) + 64800tan(180x + 90)*2sec^{2}(180x + 90)tan(180x + 90)(180 + 0)\\=&11664000sec^{4}(180x + 90) + 23328000tan^{2}(180x + 90)sec^{2}(180x + 90)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 11664000sec^{4}(180x + 90) + 23328000tan^{2}(180x + 90)sec^{2}(180x + 90)\right)}{dx}\\=&11664000*4sec^{4}(180x + 90)tan(180x + 90)(180 + 0) + 23328000*2tan(180x + 90)sec^{2}(180x + 90)(180 + 0)sec^{2}(180x + 90) + 23328000tan^{2}(180x + 90)*2sec^{2}(180x + 90)tan(180x + 90)(180 + 0)\\=&16796160000tan(180x + 90)sec^{4}(180x + 90) + 8398080000tan^{3}(180x + 90)sec^{2}(180x + 90)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return