There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 7({e}^{{x}^{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 7{e}^{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 7{e}^{x^{2}}\right)}{dx}\\=&7({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&14x{e}^{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 14x{e}^{x^{2}}\right)}{dx}\\=&14{e}^{x^{2}} + 14x({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&14{e}^{x^{2}} + 28x^{2}{e}^{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 14{e}^{x^{2}} + 28x^{2}{e}^{x^{2}}\right)}{dx}\\=&14({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 28*2x{e}^{x^{2}} + 28x^{2}({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&84x{e}^{x^{2}} + 56x^{3}{e}^{x^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 84x{e}^{x^{2}} + 56x^{3}{e}^{x^{2}}\right)}{dx}\\=&84{e}^{x^{2}} + 84x({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 56*3x^{2}{e}^{x^{2}} + 56x^{3}({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&84{e}^{x^{2}} + 336x^{2}{e}^{x^{2}} + 112x^{4}{e}^{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !