There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} + {y}^{2} - 1)}^{3} - {x}^{2}{y}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{6} + 3y^{2}x^{4} - 3x^{4} + 3y^{4}x^{2} - 6y^{2}x^{2} - y^{3}x^{2} - 3y^{4} + 3x^{2} + 3y^{2} + y^{6} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{6} + 3y^{2}x^{4} - 3x^{4} + 3y^{4}x^{2} - 6y^{2}x^{2} - y^{3}x^{2} - 3y^{4} + 3x^{2} + 3y^{2} + y^{6} - 1\right)}{dx}\\=&6x^{5} + 3y^{2}*4x^{3} - 3*4x^{3} + 3y^{4}*2x - 6y^{2}*2x - y^{3}*2x + 0 + 3*2x + 0 + 0 + 0\\=&6x^{5} + 12y^{2}x^{3} - 12x^{3} + 6y^{4}x - 12y^{2}x - 2y^{3}x + 6x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !