Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {5}^{log_{5}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {5}^{log_{5}^{x}}\right)}{dx}\\=&({5}^{log_{5}^{x}}(((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}))ln(5) + \frac{(log_{5}^{x})(0)}{(5)}))\\=&\frac{{5}^{log_{5}^{x}}}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{5}^{log_{5}^{x}}}{x}\right)}{dx}\\=&\frac{-{5}^{log_{5}^{x}}}{x^{2}} + \frac{({5}^{log_{5}^{x}}(((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}))ln(5) + \frac{(log_{5}^{x})(0)}{(5)}))}{x}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return