There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2{({x}^{2})}^{4} + 5{x}^{\frac{1}{4}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{8} + 5x^{\frac{1}{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{8} + 5x^{\frac{1}{4}}\right)}{dx}\\=&2*8x^{7} + \frac{5*\frac{1}{4}}{x^{\frac{3}{4}}}\\=&16x^{7} + \frac{5}{4x^{\frac{3}{4}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 16x^{7} + \frac{5}{4x^{\frac{3}{4}}}\right)}{dx}\\=&16*7x^{6} + \frac{5*\frac{-3}{4}}{4x^{\frac{7}{4}}}\\=&112x^{6} - \frac{15}{16x^{\frac{7}{4}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !