There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -2arcsin(sqrt(\frac{(1 - x)}{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -2arcsin(sqrt(\frac{-1}{2}x + \frac{1}{2}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -2arcsin(sqrt(\frac{-1}{2}x + \frac{1}{2}))\right)}{dx}\\=&-2(\frac{(\frac{(\frac{-1}{2} + 0)*\frac{1}{2}}{(\frac{-1}{2}x + \frac{1}{2})^{\frac{1}{2}}})}{((1 - (sqrt(\frac{-1}{2}x + \frac{1}{2}))^{2})^{\frac{1}{2}})})\\=&\frac{1}{2(-sqrt(\frac{-1}{2}x + \frac{1}{2})^{2} + 1)^{\frac{1}{2}}(\frac{-1}{2}x + \frac{1}{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !