There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-(s + 1)(s + 2)(s + 3)}{(2s + 8)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-s^{3}}{(2s + 8)} - \frac{6s^{2}}{(2s + 8)} - \frac{11s}{(2s + 8)} - \frac{6}{(2s + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-s^{3}}{(2s + 8)} - \frac{6s^{2}}{(2s + 8)} - \frac{11s}{(2s + 8)} - \frac{6}{(2s + 8)}\right)}{dx}\\=&-(\frac{-(0 + 0)}{(2s + 8)^{2}})s^{3} + 0 - 6(\frac{-(0 + 0)}{(2s + 8)^{2}})s^{2} + 0 - 11(\frac{-(0 + 0)}{(2s + 8)^{2}})s + 0 - 6(\frac{-(0 + 0)}{(2s + 8)^{2}})\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !