There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 6{\frac{1}{({x}^{2} - 2x + 4)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6}{(x^{2} - 2x + 4)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6}{(x^{2} - 2x + 4)^{2}}\right)}{dx}\\=&6(\frac{-2(2x - 2 + 0)}{(x^{2} - 2x + 4)^{3}})\\=&\frac{-24x}{(x^{2} - 2x + 4)^{3}} + \frac{24}{(x^{2} - 2x + 4)^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-24x}{(x^{2} - 2x + 4)^{3}} + \frac{24}{(x^{2} - 2x + 4)^{3}}\right)}{dx}\\=&-24(\frac{-3(2x - 2 + 0)}{(x^{2} - 2x + 4)^{4}})x - \frac{24}{(x^{2} - 2x + 4)^{3}} + 24(\frac{-3(2x - 2 + 0)}{(x^{2} - 2x + 4)^{4}})\\=&\frac{144x^{2}}{(x^{2} - 2x + 4)^{4}} - \frac{288x}{(x^{2} - 2x + 4)^{4}} - \frac{24}{(x^{2} - 2x + 4)^{3}} + \frac{144}{(x^{2} - 2x + 4)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !