There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{6}{({x}^{2} - 2x + 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6}{(x^{2} - 2x + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6}{(x^{2} - 2x + 4)}\right)}{dx}\\=&6(\frac{-(2x - 2 + 0)}{(x^{2} - 2x + 4)^{2}})\\=&\frac{-12x}{(x^{2} - 2x + 4)^{2}} + \frac{12}{(x^{2} - 2x + 4)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-12x}{(x^{2} - 2x + 4)^{2}} + \frac{12}{(x^{2} - 2x + 4)^{2}}\right)}{dx}\\=&-12(\frac{-2(2x - 2 + 0)}{(x^{2} - 2x + 4)^{3}})x - \frac{12}{(x^{2} - 2x + 4)^{2}} + 12(\frac{-2(2x - 2 + 0)}{(x^{2} - 2x + 4)^{3}})\\=&\frac{48x^{2}}{(x^{2} - 2x + 4)^{3}} - \frac{96x}{(x^{2} - 2x + 4)^{3}} - \frac{12}{(x^{2} - 2x + 4)^{2}} + \frac{48}{(x^{2} - 2x + 4)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !