There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2x - 5}^{4 - \frac{x}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2x - 5}^{\frac{-1}{2}x + 4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2x - 5}^{\frac{-1}{2}x + 4}\right)}{dx}\\=&(\frac{(\frac{(\frac{-1}{2} + 0)}{(\frac{-1}{2}x + 4)} - \frac{(2 + 0)log_{2x - 5}^{\frac{-1}{2}x + 4}}{(2x - 5)})}{(ln(2x - 5))})\\=&\frac{-2log_{2x - 5}^{\frac{-1}{2}x + 4}}{(2x - 5)ln(2x - 5)} - \frac{1}{2(\frac{-1}{2}x + 4)ln(2x - 5)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !