There are 1 questions in this calculation: for each question, the 4 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ Asin(wt + r) + B\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Asin(wt + r) + B\right)}{dt}\\=&Acos(wt + r)(w + 0) + 0\\=&Awcos(wt + r)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( Awcos(wt + r)\right)}{dt}\\=&Aw*-sin(wt + r)(w + 0)\\=&-Aw^{2}sin(wt + r)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -Aw^{2}sin(wt + r)\right)}{dt}\\=&-Aw^{2}cos(wt + r)(w + 0)\\=&-Aw^{3}cos(wt + r)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -Aw^{3}cos(wt + r)\right)}{dt}\\=&-Aw^{3}*-sin(wt + r)(w + 0)\\=&Aw^{4}sin(wt + r)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !