There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{{x}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{{x}^{x}}\right)}{dx}\\=&({x}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(x) + \frac{({x}^{x})(1)}{(x)}))\\=&{x}^{x}{x}^{{x}^{x}}ln^{2}(x) + {x}^{x}{x}^{{x}^{x}}ln(x) + \frac{{x}^{x}{x}^{{x}^{x}}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !