There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(e + x)}{(-x + e)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(e + x)}{(-x + e)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(e + x)}{(-x + e)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + e)^{2}})ln(e + x) + \frac{(0 + 1)}{(-x + e)(e + x)}\\=&\frac{ln(e + x)}{(-x + e)^{2}} + \frac{1}{(e + x)(-x + e)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !