There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{-x} + \frac{e^{x}}{e^{-x}} - e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x}}{e^{-x}} + e^{-x} - e^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{e^{-x}} + e^{-x} - e^{x}\right)}{dx}\\=&\frac{e^{x}}{e^{-x}} + \frac{e^{x}*-e^{-x}*-1}{e^{{-x}*{2}}} + e^{-x}*-1 - e^{x}\\=&\frac{e^{x}}{e^{-x}} + \frac{e^{x}}{e^{-x}} - e^{-x} - e^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !