There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{a}{\frac{1}{a}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{a}{\frac{1}{a}}^{x}\right)}{dx}\\=&({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})){\frac{1}{a}}^{x} + {x}^{a}({\frac{1}{a}}^{x}((1)ln(\frac{1}{a}) + \frac{(x)(0)}{(\frac{1}{a})}))\\=&\frac{a{x}^{a}{\frac{1}{a}}^{x}}{x} + {\frac{1}{a}}^{x}{x}^{a}ln(\frac{1}{a})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !