There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{2})ln(sec(2)x + tan(2)x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln(xsec(2) + xtan(2))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln(xsec(2) + xtan(2))\right)}{dx}\\=&\frac{\frac{1}{2}(sec(2) + xsec(2)tan(2)*0 + tan(2) + xsec^{2}(2)(0))}{(xsec(2) + xtan(2))}\\=&\frac{sec(2)}{2(xsec(2) + xtan(2))} + \frac{tan(2)}{2(xsec(2) + xtan(2))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !