There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 5{e}^{(3x)}ln(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5{e}^{(3x)}ln(2x)\right)}{dx}\\=&5({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))ln(2x) + \frac{5{e}^{(3x)}*2}{(2x)}\\=&15{e}^{(3x)}ln(2x) + \frac{5{e}^{(3x)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !